

#### **Data Requirement and Data-Driven Framework Contributing to Safe UTM Operations**

Prof. Kin Huat Low, Ph.D.

Air Traffic Management Research Institute (ATMRI) School of Mechanical and Aerospace Engineering Nanyang Technological University, Singapore

**Authors:** Wei Dai, John CH Wang, Anush Kumar, and Kin Huat Low

Drone Enable Symposium 2022; Panel on *UTM Data Requirements* Wednesday, 16 November 2022; 9:05-10:05 @ ICAO, Montreal, Quebec, Canada

#### **UTM Co-Exists with ATM in Urban Airspaces**

#### Air traffic management (ATM)

Connects the world



https://www.weforum.org/agenda/2018/07/the-world-s-busiest-day-for-air-travel-mapped/

#### UAS traffic management (UTM)

Connects the community



@Air Traffic Management Research Institute (ATMRI), NTU, Singapore

#### **Emerging Demand for UAS Operations**

- Significant growth in UAS traffic is forecasted by academia and industry
- Demand for UAS operations is already seen in many areas



Rapid development of the UAS industry (2020-2029)



Parcel delivery



Parcel delivery in major European countries (2019-2050)



Shore-to-ship delivery

#### From Concepts to Real-World Operations

#### ConOps published by authorities

 Many countries and regions have published UTM ConOps



- Drones are used in food and package deliveries, emergent medical goods transportation
- Multitude of use cases including reservoir monitoring and building façade inspection



Concept of Operations CORUS U-Space ConOps

FAA UTM ConOps



Transport of swab test samples using drones



UA delivery in Australia

#### **Challenges: UTM Risk Management in Urban Environments**

- Singapore faces twin challenges of urban landscape with high population density and congested airspace environment
  - Complex and restricted urban airspace
  - High ground risk due to high population density

Air Risk: How to enable the safe and efficient integration of UAS into current airspace



Area limits map for UAV operation in Singapore airspace https://www.caas.gov.sg/public-passengers/aerial-activities

Ground Risk: How to ensure the safety of UAS operations to third parties



#### Safety issues that UAV operates in urban environments

Pang, B., Hu, X., Dai, W., & Low, K. H. (2022). UAV Path Optimization with An Integrated Cost Assessment Model Considering Third-Party Risks in Metropolitan Environments. Reliability Engineering and System Safety, 1–18. https://doi.org/10.iorg/10.1016/j.ress.2022.108399

#### Opportunities (*Digital Era*): Data-Driven Approaches

#### Data availability

- Digitalization happening in many industries enables the import of data
- Industrial practices providing experiences

#### Methodological readiness

- Exploding computational power
- Maturity of data-driven methods





#### Required Data for UTM Safety in UAS Flight Life Cycle

#### Pre-Flight Phase

- Initial screening of high-risk ops
- Support robust flight plan

#### In-Flight Phase

- Conformance monitoring
- Early prevention of hazard

#### Post-Flight Phase

- Empirical analysis
- Performance review



## Pre-Flight & In-Flight Phases: Internal Data Used in UTM Ecosystem

#### **Data of UAS system**

- Aircraft characteristic data
- Aircraft system reliability data
- Aircraft status monitoring data



Source: https://doi.org/10.5194/amt-14-4255-2021

#### **Data of UTM system**

- Navigational resources data
- Tracking and UAS traffic flow surveillance data
- Status of navigational infrastructures



#### Pre-Flight & In-Flight Phases: External Data Used in UTM Ecosystem

#### Weather information

- Weather forecast data
- Real-time weather observation

# 2.35 pm Sun 17 Oct

http://www.weather.gov.sg/weather-rain-area-50km

#### Static & dynamic obstacles

- Static physical boundaries for UAS
- Moving objects in the urban area



https://esrisingapore.com.sg/esri-cityengine

#### **Data of UTM system**

- Census population distribution
- Observed density of pedestrians and other third parties



#### Post-Flight Phase: Recorded Data Used in UTM Ecosystem

#### **UAS Quick Access Recordings (uQAR)**

- Aircraft performance review
- Aircraft maintenance review



#### **Four-dimensional Trajectory Data**

- Post-flight TSE verification
- Post-event causal analysis



10

#### Framework of Data-Driven Urban UTM

- A framework is established to overcome the challenges by using
  - A quantitative risk management strategy
  - Data-driven methods
- The framework consists of:
  - Risk Assessment Platform
  - Airspace-Resource-Centric (ARC) urban airspace management



#### Risk Assessment Platform: Data-Driven Flight Risk Quantification

- Risk Assessment Platform provides risk estimations at strategic and pre-tactical phases for urban UAS operations.
  - Quantitative assessment of Third-Party Risk (TPR) uses aircraft reliability, population density, geographical, and other data
  - Preliminary version focuses on the risk of ground fatalities

#### **Workflow of TPR assessment**



#### **Decomposition of ground fatality risk**



#### Risk Assessment Platform: Graphical User Interface (GUI)

• Ground fatality rate estimation ( $\lambda_{fatality}$ ) by given flight mission information



- Colors on risk map display population density.
- Ground fatality rate indicated when a rone hovers over region.

#### Risk Assessment Platform: Graphical User Interface (GUI)

UA reliability threshold estimation via given Target Level of Safety (TLOS) guideline

- Risk assessment differs when 'Other' or Custom UA selected
- UA reliability threshold estimated for TLOS of  $10^{-7}$
- Equations adapted from JARUS SORA



#### **ARC** Urban Airspace Management: Management Strategy

Living Area

Discretization of urban airspace

resources

Spatial volume

CNS resources

 Non-extreme weather and low-risk regions



#### Safe UAS operations supported by

- Terrain data and ground infrastructures data
- Weather data
- CNS coverage and performances data
- More other data



Conceptual illustration of the ARC approach for urban airspace management

#### **ARC** Urban Airspace Management: Illustrative Application

- The ARC approach maximizes the utilization of constrained urban airspace resources
- A uniform approach for dynamic management of airspace including resource allocation and conformance monitoring
- Compatible with advanced operational concepts
  - Risk-based flight management
  - Separation management
  - uRNP concept
  - 4D TBO
- Support quantitative analysis of airspace resources utilization effectiveness



Application example: ARC-based visualization of airspace utilization heatmap (in *different altitudes*)

#### **Key Takeaways**

- Data is needed in UTM to improve flight safety
  - Applied to the pre-flight, in-flight, and post-flight phases
  - Assist the planning, monitoring, and decision-making in UTM operations
- A data-driven framework towards a total flight phases solution has been established
  - Pre-flight risk assessment
  - In-flight ARC approach for urban airspace management
- Standardization of data is essential in the future UTM deployment
  - Unify the heterogeneous data
  - Data interfaces and adaptations

# **Closing Remarks**

#### Data Acquiring and Testing: Long Journey of Car Industry

#### Timeline of establishing standards



#### **Supporting Tests**

- Frontal crash tests
- Side crash tests
- Roof strength test
- Head restraints & seats test
- Front crash prevention tests
- Headlight evaluation
- Seat belt reminder evaluation
- LATCH evaluation
- Verification

2021 INTERNATIONAL CAR SALES

66.7m units

PASSENGER CARS ARE THE LARGEST CATEGORY OF MOTOR VEHICLE PRODUCTION

57m

#### Data Acquiring and Testing: Aviation Industry (IATA)

#### Safety and Flight Operations **Data Solutions**

Established to support a safe, secure, efficient, and economical air transport industry that is environmentally sustainable.

Source: iata.org/en/services/statistics/safety-data/#tab1

#### **Aviation Operations Data**

- Incident Data eXchange (IDX)
- Flight Data eXchange (FDX)

#### **Meteorological Data**

- **Turbulence Aware**
- Roof strength test

#### **Maintenance Data**

- Repair and overhaul (MRO) SmartHub
- Safety & Quality Data
  - Aviation Safety Culture Survey (I-ASC)
  - Integrated Management solutions (IMX)

In comparison, there is still some times and many steps away for acceptable unmanned aircraft system (UAS) operations, specially in urban environments Like manned aircraft, cars, & driverless cars,

Mature, reliable, and sustainable UAS ecosystem & implementations for safe multipledrone operations take times,

and require several rounds of iterations, as well as collective effort and mutual "trust" among different stakeholders.

### Thank you for your interest!

Feel free to reach out for feedback and collaboration:

mkhlow@ntu.edu.sg